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SUBSONIC GAS FLOW PAST A WING PROFIIE *
By S. A, Christlenovich and I. M. Yurlev

The use of the linearized equations of Chaplygin to calculate
the subsonic flow of a gas permlte solving the problem of the flow
about a wing profile for shsence and presence of clrculation
(reference 1).

The solutlion is obtained in a practical convenlent form that
permits finding all the required magnitudes for the gas flow (lift,
1ift moment, veloclity distribution over the profile, and critical
Mach numbers. This solutlion is not expressed in simple closed form;
for a certain simplifying assumption, however, the equations of
Chaplygin can be reduced to equations with constant coefficients,
and solutlions are obtalned by using only the mathematical spparatus
of the theory of functlions of & complex varieble.

The method for simplifying the equatione was pointed out by
Chaplygin himself (reference 2). Tsien (reference 3) applied simi-
lar equatione to the solution of the flow problem and obtained a
solution for the case of the sbsence of circulation. He did not
succeed Iin obtaining the flow about the profile in the presence of
clrculation.

1. EQUATIONS OF MOTION

The equations of the two-dimensional adlabatic irrotational
flow of & ges are of the form

dew) |, 3ev) _

ox oy
M _ov _ (1.1)
dy ox

v_t_z + a2 - a*z(X+l)
2 Xal 2(x-1)

*"Obtekanle Krylovogo Profilis Pri Dokriticheskol Skorosti
Potoka." Prikladnaye Matematike 1 Mekhenika., Vol. 11, no. 1, 1947,
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NacA T™ 1250

where w 1s the magnlitude of the veloclity, P the density, =a
the velocity of gound, a, the critical veloclty, and u and v

the proJjections of the velocity vector on the x- and y-axes,

From these equations it follows that the expressions

__.“' + -—L

* (1.2)
Yy = — B Y ax + . R4y
DO ax Py B
are total differentials; p-o is the density of the gas at w=0.

By solving these equations for dx and dy, there 1s obtained

ax = c08% sp_Posind 4
A e A
(1.3)

ay = 8In3d 4 Po cos d 4
yo= I A0y v

where A = w/a,.

From the conditions expressing the fact that the right sides
of equations (1.3) are total differentials ,

o gind 3 (PO cosd
dy A T 39\e A

Qd cos d o [ Po sind
a—rsr—"sc‘p(-ag-x‘-)

the equations of Chaplygin axre obtalned

M 1 x-1.2) %" 3
svx(l‘m") 39
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By introducing in place of the variable A the variable s
defined by the equation (reference 1)

2
1-A aa
ds = o oL
s \/m2 1)/ (1) X (2.4)
the equation of Chaplygin is transformed to the form .
Js A
5 -VE 35

(1.5)
Od o8
= ~VE So

Where

1+X .
1-X
2 X=1 2) Po 2
K = l1- 1 =222 -
_ (r-27) ( TN =%/l -M
The Mach number is M = w/a. The constant of integration in
equation (1l.4) is chosen with the conmdition that e5/A = 1 for A-»0.
The function e° 1g denoted in that which follows by A .
Tables of the values of A and VK as functions of A are given
in reference l.

If in equations (1.5) p and y are taken as the unkown
variables connected with s andd by the relation

8 -18 =7F (p + 1iv)

where f(p + 1v) is an analytic function of p + 1v, equations
(1.5) can be replaced by the system of equations:

ds 33
ETil
(1.8)
ds %
v T ¢

and
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o® Ay
S; =V—KV§3 '
(1.7)
S _ v
v VE ou

The coordinates x and y are determined from equations (1.3).

The functions satisfying equations (1.6) and (1.7) convert the
right sides of equations (1.3) into total differentials.

2. APPROXTMATE EQUATIONS

It is assumed as an approximation in equations (1L.5) that

VEx \/Ko where \/E® 1is the value of \/E corresponding to
X =Ama

Let
vV Key =§

Equations (l.7) then assume the Fform

Sp _
op oV
X _
ov - du

(2.1)

(o7

Because of this simplification of equations (1.7), the right
sides of equations (1.3) will no longer be total differentials
after the solutions of the system of equations (1.6) and (2.1)
are substituted in them. It ls necesssry to meke changes 1n
equa?ions (1.3) to compensate for the simplification of equations
(1.7).

Then
A _2P 1 ~,P0_ 2
708 VvET P Vig
& (). .1 P0_2
ds ~ Ap\/Kw

Moreover,

1258
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Whence

(2.2)

i») lo'D

1. -
5 = (Cge 8-0,6°) NEq

The values of the comstants are chosen from the condlition
requiring the exact satlsfying of equations (2.2) for A = A=.

(2.3)

Substituting in equations (1.3) the corresponding expressions
from equations (2.2), the following equation is obtained:

dx + 1dy = C o198 (ap-1a]) - Cpe~5+1? (dp+ia¥) (2.4)

The right side of equation (2.4) by virtue of equations (1.6)
apd (2.1) is a total differential. '

Consider the Jacobian D(x,y)/D(w $: Meking use of equation
(2.4), it is found that

D{x 2 =28 2.2s
= C,% - Cq%e
D&M% 2 1
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In order that the determinant should not be zero, 1t is
necessary that the following Inequality be satisfied:

<: mil <%= 1 ’)
m-1 1-M®2

This conditlion is a consequence of the modlfication made in
the equations of motign; however, it 1s not essential. This
insquallty is generally satlisfled i1f the fundamsental Inequality

A Rcr ig satisfled where Rcr. = 0.7577 + . . corresponds to A =

1258

3. FORMULATION OF THE PROBLEM

In the plane 2z = p + 1v, & closed contour about which is a
flow of an incompresslble fluid is considered. The directlon of
the flow wlll be taken to -coinclde with the direction of the
x~exis and the velocity at infinity Aew. Iet f = £(z) be the

complex potentlael corresponding to this flow and set

s - 13 = log gf (3.1)

The solution of equations (1.6) as determined by equations
(3.1) is to be treated as the solution of the problem of the flow
about a profile in the p,v-plane of a flctitious stream of an
incompressible fluld. The magnitude of the velocity at each
polnt of thils flow ls equal to )\ and the angle of inclination

of the veloclity vector to the x-axls 1is equal to §; thus

art

Fe-1
az - het?

The complex potential may be represented in the form

f=>\°°(§+ loga

z = X(E)

(3.2)
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where 2z =%(f) is a function mapping the outer region with respect
to & clrcle o_f unit radius in the E-plane on a region outside the
contour considered. Thls function satisfies the conditions

Xe) =
q:
(E’é e = *

The last condition determines the scale for the contour in
the plane p + iv.

The expansion of z = X (f) in the neighborhood of the point
at 1nfinity has the form

z=§+ao+%3;+%§_+... (3.3)

é_f;_"’ﬂ ~ 1 al-l
dz-?\@l+§,za-z+—§-2—+...:[ (3.4)

The circulation of the veloci‘by I' - in the flow of an incom-
pressible fluid is equal to [ = 7. )

In the t-plane, the veloclity potential ® and the stream

function ¥ will be considered also as the velocity potential
and the stream function of an incompressible fluid about a cir-
cular cylinder.

The complex potentlal F =@ + :ﬂ; is introduced and repre-
gented In the form

7 "3‘::: (E + % + .2_,2& log §) (3.5)

where ¥ 1is as yet an arbiltrary parameter determining the cir-
culation of this flow. ) :
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In the solubtion of the exact squations 1t 1s necessary, in -
place of the function (3.5), to find the exact corresponding solu-
tion of the linear system (1.7). In reference 1, this solution
is constructed by the method of successive approximations.

Equation (2.4), in the notation assumed, may be written in the
form

d.x+id.y=Czd—f7lEz-dF+Cla—i§E (3.6)

By considering all magnitudes as functions of the varlable E,
the followlng expresslon is obtalned:

1
=

ar /&t aF
ax =
* 107 =0y Ffar Y6+ CL g & (3.7)

o

Z

or transforming 1t again

——— 2
_ dF /d dF daf dg -
dx + idy = 02 37/t dz + Cl EE 'GTE' Ciz) dz (3.8)

Thus, knowing the function z =X (), it is possible to make
use of equation (3.7) or (3.8) to determine x end y with the ald

of quddratures.

The condltions the functions z =% () and equation (3.5) must
patisfy in order that the obtained solution correspond to & phys-
ically possible flow are congldered.

In order that the solution have & physlcal sense, it 1s nec-
essary that the region in the x,y-plame corresponding to this-
golution be a single~sheet regilon.

A necessary condition for this conditlion is that the inte-
gral of dx + idy should be zero over any closed contour in the
region |& > 1.

Because the expressions on the right of equation (3.7) are
the sum of analytic functions of § and § having no singularities
in the region ]g] >1, the corresponding lntegrals do not
depend on the shape of the path of integration and are equal to
Tjro in going eround any closed contour not ineluding the circle

£l = 1.
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The values of the integrals along any closed contour, including
the circle lgl = 1, are equal; consider the integral of dx + idy
along a circle of large radius with center at the origin of
coordinates.

In the neighborhood of the point at infinity

11 [ 7 1 ( 72 ) 1. :l
= 1 - = . - 2=+l . .
iEjiz = %, Zxl £ \ag2 | 1 2"

whence
ar fat y =71 (47 -5 1
di‘/d.z l 271 E'l" 21{2 - 8 §2+-.¢
Moreover

df dF -~ 2 7+ 71 7 = 1
zdg=mE- Zﬁif-<ﬁ al+2 E‘E'l‘ooo

By substitubting in equation (3.7), integrating over the cir-
cle |t| = R, and passing to the limit as R—>

j" 4x + 133 = G, (7 = 9) + &% (7 + )

Replacing Gl and C, by the corresponiing values from
equations (2.3) gives

jdx+idy=a§c:<}'-/\7%-@)

Thus the conditlon thet to any closed contour in the region
|gl >1 should correspond & closed contour in the x,y-plane oon-
sists in the fact that the previously undetermined value of ¥ in
the function (3.5) must be taken egual to

~

y = - 2:_ — (3.9)
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This valus of ¥ 1s proportional to the potentlal in the
passage around the closed contour in the x,y-plane and therefore
.is proportional to the circulation of the. actual flow.

When equation (3.7) in the neighborhood of the point at infin-
ity ls considered, it is found that the ellipse

X - Xy = ;&:;;4-C)<Ea

(3.10)

Ao 1
y=Jg = Q+o<—-)
R
A1 - Mo?
corresponds to the clrcle of radius R in the plane £ = p + iq.

Thus the neighborhood of the point at infinity in the £-plane
is unlquely mapped on the reglon of the point at infinity in the
X,y-plane,

4, TNVESTIGATION OF CONTOUR IN X,Y-PLANE

Equation (3.7) is considered near the contour [g|= 1. The
derivative of the functlon (3.2) becomes zero on the circle IEI =1
gt the two points

€01 = 6™%0
(4.1)
bop = oi(x T 0g) <s_m 0 =
Then
ar o (¢ - fo1) (£ - o) (4.2)
Tt = A Iz

In an analogous menner, the derivetive of the function (3.5)
where ¥ 1is determined by equation (3.9) can be represented in
the form

aF ~ (E-Ex1) (£-Exp) (4.3)
af =he &
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where

E*l

g*g = ol (’T‘G*) éin By = ——7.;';=_Z>
. 4x /L - M5/

Equation (3.7) will therefore be

(4.4).

ax + ‘1dy = C éé-g;g%%g- E_,«__Z_; X' (E) at + cli'“zgf-gglz!E—Egi}gif—f*l“f-EOZ} _EE_ (£.5)

2 (E-£02) (t-Loz N3

In the absence of circulation, for exemple, for Y=ys= 0,
~ o (22 2 3
ax + 14y = CoXx' (&) at + clxiii._:géi)_ .4%5 (4.6)
' . X

It is shown by equation (3.7) or (4.5) that the points of the
contour corresponding to the zeros of the functions df/dz and
d.F/dg will, generally speaking, be singular points of the contour.
The presence of these singularitles 1s a consequence of the modi-
fication of equations (1.7).

In consldering in greater detall what takes place in the
neighborhood of these points, let df/dz in the neighborhood of
¢ = £, bave an expansion in the form

%’_(f'go)kl}o”‘l (E-8p) + - - _J

where O < k< l. To a cusp of the profile in the z-plane (for
exsmple, the tall point of the profile with zero angle) corresponds
the value k = 0, and to a regular point of the contour corresponds
the value k = 1. In the neighborhood of the point ¢=¢, (from
equation (3.7))

dx + idy = at + . . .

(E - go)k
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where A 1s a certain coefficient; thus,

1258

for k<l

) 1=k

x-x0+i(y-yo)=i_%_.];(g_io

for k=1

x-xo+1(y-y0)=Alog(g-go)+...

It follows that an anguler point of the comtour in the
xX,y-plane will correspond to the point ¢ = ﬁ 3 this angular

point with angle =n(l-k) is turned conceve to the flow; for
= 1 the vertex of the angle approaches infinity.

The point £ =§, at which dF/d¢ becomes zero is now con-

sidered. Let df/dz at this point also become zero and the expan-
sion of this function into a series in the neighborhood of this -
point take the form

= (¢t - E0+m (E§)+...] v

The point at which ! = 0 18 a reguler point of the con~
tour In the plane 2z = p+lv. The point at which 1>1>0 1s an
angular point of the contour. At this point, the angle is con-
cave to the region outside the contour.

In the neighborhood of the point ¢=¢§ 7

dx + 1dy =B (¢ -g‘)l'z' at+ ...

and therefore

x-xo 1’+.o.

To this point iIn the x,y-plane also corresponds a cusp. For
t = 0 +this point is a cusp with its sherp point facing the flow;
for 1 >0 +this point is engular with angle =n(2-1); for | =1
it 18 an ordinary point of the contour. -
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5. FIOW ABOUT AN ARC OF A CIRCLE

Before proceeding to the consideration of the flow about a
contour of arbitrary shape, the example of the flow about a con~
tour corresponding to an arc of a circle in the plsmne 2z = p + 1v
should be considered. The function

2
2 = +ki+l'k
¢ F+ ki

where k < 1 maps the reglon oubtside the "cut" along the arc of
'l|: e circle shown In figure 1 into the regicn outside the circle
g = lo

The derivative

az _ 1 1 - kz
T Y
(¢ + k1)
becomes zero at the polints
2
;Ol = = ki - 1 -k

V4 2
§02=-k1+ 1=~k

corresponding to the ends of the arc. The angle 60 is therefore
determined by the eguation

sin 65 = - k

Then

az (& - €57)(E - £o0)
at (¢ + k)2

Only the case of flow for whilch the velocities at the ends
of the arc are finite can be considered. In this case,
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Thus

k

8in 6. = = S
RS

The derivative of the function F(t) with respect to € in
this case willl be

~ (6 -E,1)(¢ - §5)
%%.=ML *_EZ 'Eﬁrz
where
E  STEE
* 1-M 1 - M

@

oo APuZ
ARV VA J1 -2

Equation (3.7) assumes the following form:

dx + 1dy = G, (E_i*l)(ﬁ_ E*Z) at + Clxmz(i' E*l) (E-E*z) E'ki-)a at
(t+k1)2

By integrating this equation,
1
iy = C {§+2ki<—-—-———- >los (¢ + k1) +
x + iy o 7————21 T
1 2 ~2 1. 1
m[l-kz(ﬁ- >]}+017\@{§+E 2ki<m-:?+l>log§+

2
5—-}+ kiC

s )BT B

(5.1)

1258
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The constant of Integration C 1s chosen so that for Meg»0
the initilal arc of the circle is obtained. For M0,
equation (5.1) becomes

2
x+1y=g+k:1.()+l'k
g + ki

It is assumed that C =5‘\,,,/7\°..

The ends of the contour obtalned correspond to the polnts
4y and £4o, and the points f) and foz become ordinery points

of the contour. The tangents at the angular points-of the contour
coincide at the upper and lower sides. With an accuracy up to

k2 for x and k3 for ¥, *the coordinates of the end polnts of the
arc wlll be

x=:h{2&a+5=k2<-2+¥=;+ 2 +l>}+
N ~ l
Y=%k3<m§ l>+. o« .

The maximum thickness of the contour is equal to

0 (e )
- MS

The arc corresponding to the case k = 0.04, M =M, = 0.803
1ls shown in figure 2.

If in the expression for x there are retalned only the mag-
nitudes of the first order and in the expression for y only the
magnitudes of the order of k, ‘the proflle will be an arc of a
parabols

y=22ey (1 - _~_:&2___._>
Ao A INE

sinmilar to the initial arc but with an aoccuracy up to higher orders.
In figure 2 thils parabola ls shown by a dashed line.
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St11l another example of an lrrotational flow about a contour
corresponding to an ellipse in the plane 2z = p + ip shall be
considered. The function

2
z =§ + X

whoere 0 < r <1 maps the region |g| > 1 on the region outside
the ellipse
2 2
2 + v = 1
1+ r2)2 )1 - »8)?

After integration equation (3.7) gives

. 2 s .
x+1y = C, <§+E‘g_2>+clx¢z[1+r gz"“) 1os%l§+§+;éﬁ§.]
2

Because (5.2)

2 2
1im l+r ‘(E - 2) log E - X + e -+ _%‘_g_)a: g 4 g. - —l—
50 213 £+ T r £ 3¢5

equation (5.2) for r = 0 assumes the form

x+iy=Cé§+chmz<E+.2§-;E].;5>

If ¢ = 1-r 1s denoted and in equation (5.2) magnitudes of the
order €2 are neglected

- >2 (3 , 1+ 2¢
X+ 1y =0C <§+l 25)+C>@<§+
2 i 1 E
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The proflle represented by this last equation is very close
to the inltlal ellipse. .

€. FLOW ABOUT AN ARBITRARY CONTOUR

In order to obtaln in the x,y-plane & contour without angu-
lar points, 1t 1s necessary lIn the auxlliary pleane of the variable
zZ =p + v +to be given a contour having angular pointe chosen in
& speclal manner.

A certain auxlliary function is constructed that ensbles the
obtalnment of the necessary singularities on the contour in all
cases considered.

In the plane of the complex variable §, a region outside
the contour shown in figure 3 is considered. This contour con-
gists of the cirele D and the cut along the arc of the cir-
cle D' tangent to D at polnt c¢. The points & and b are
the enguler points of the contour. Ths reglon considered is
mapped the region outside the unit circle (fig. 4) so that the
points a, b, and ¢ correspond to the given pointe A, B, and C
on this circle and the derivative of the mapping functlion at the
point of infinity is equal to unlty. The radil of the circles D
and D' and the length of the arc abc are then determined,

The redulred mepping function 1s determined by the following
equations:

n=-1£_i_52
t -t

u=1+ (1, -1y log (n, - 1)

s po + 1 ég_u + U
Me +1 Y% U = U

t = -

where .

Up = = 1 + (1, - 1) log (ny + 1)
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where £, &, and £, are the coordinates of the points A, B, and
C 1in the plane ¢ ; and n, and n, are the coordinates of the corre-
gponding points in the plane 1.

For the deriva'bive »

be - EN E-to (6o - tx) (t - to) Eotx
‘f To~ e -g*[“(s*-acﬂgo-zc) 1°8§-§0J

-2

(6.1)

The function considered is denoted by { = g(t). As is seen
from equation (6.1), this function sstisfies the condition that

gt(w =1,

The function g(¢), as follows from its geometric sense, is
regular for [f|> 1 and on the circle |¢ =1 has two singular
polnts § = {p and € = fx.

At the point § =¢ , the derivative da{/d¢ is finite

The contour E I1n the u,Vv-plane ls consldered as having no
angular points. Let the function 2z = X () map the reglon out-
side the contour onto the region outside the circle |E| = 1.

Tet ¢ op &nd &, Dbe points on the circle |g[ = 1 corresponding

to the critical polnts for the flow considered about the contour,
and E*l and ¢,o be the corresponding critical points for the

flow about the circle determined by the function F(E). By

gl(ﬁ) and 82 (¢), the values of the function g corresponding to
the points ., £, yend §,, £,, are dencted. The values {1
and £, mey be chosen arbitrarily. Instead of the contour E 1in

the p,v-plane, the contour E¥* is considered, which bounds the
area on which the region |§|> 1 is mapped by the function deter-
mined by the equatlion

igi =x' (&) &' (8) & (B) (6.2)
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To thls contour in the x,y-plane will correspond a conbour
without angular points. :

The functions gl' and 82' may be represented in the form

g = g-:gzi hy
v _ - Loz
% E - txz hz

where hl and hy become zero at the points £ = ﬁ*l and £ = ﬁ*z
respectively, as [log(E - £,) J"2. Equation (4.5), which serves

for computing the coordinates in the x,y-plane, then assumes the
form

' ~ 2 (B be)2(tEp)?
ax + 14y = C,X (§) nhy At +A, C (64%%(2) h:lz_l; (6.3)

On integration, the singularitieé correspondling to hl and }:1,a
vanish.

In the x,y-plane a closed contour without angular points is
obtained. The actual construction of the contour E* is unnec-
essary. For constructing the contour in the Xx,y-plane and com-
puting the velocity field, only the derivative (6.2) is required.

The conbour in the x,y-~plane will approximate the initial
contour in the plane 2z = u + iv and will approach colncldence
wlth the latter as M >0. The greatest difference In the con-

tours will be near the critical points. By a rational cholce
of the magnitudes £ o1 8nd 4 op» ‘the difference can be made a

minimum. The oontour shown in Pfigure 5 is that one corresponding
to the case where the function z =X(t) is z = £ where

M_ = 0.333
y=C =1
7 J

= o
ecl 150

8oz = 30°
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It 1s evident that the indlicated method of constructing the
function g 1s not the only one possible; it was discussed only
from considerations of simpllicity. It 1s not difficult to define
a function g making possible the construction in the x,y-plane
of a contour wlth any glven angular point.

7. APPROXIMATE CONSTRUCTION OF CONTOUR

It was previously shown how to obtain in the x,y-plane a
contour wilthout angulax points. The effect the angular points
of the contour will have, if they exist, on the flow is now con-
sidered. For this purpose, in the E-plane two suxiliary oir-
cles are drawn with centers at the points ¢ oL and ¢ 02 passing

through the points ¢ 1 and ¢ *2° The closed contour formed by
the arcs of the circle |§| = 1 and the arcs of the auxiliary cir-
cles are mapped into a closed contour in the x,y-plene.

By meking use of equations (3.2) and (3.5) and noting that
]El 1, 1t is seen that

[=]]

&L - 21 X,e71? (sin 6 - sin gp)

4
%e % exp[i(G-ﬁ-%)

ar | 21?\ e~i% (ain 6 - sin 0,) dz _ o-219
dz

[o 7]

at
Then
= gin6-ginbs - -
dx+idy {czs Tn6-a1n, + 4C; A f (81in6-s1in6,) (sind sine*)} dz

(7.1)

In particular in the absence of clrculation

1258



aset

NACA T 1250 ' 21

2
~ 2ak 2
dx+idy§{cz+4ClA@\d—z-\ s:l.ne}dz

The coefficient of dz 1s nearly constant for polnts removed
from E and § The contour in the Xx,y-plane +therefore approx-

imates very closely the contour in the z-plane.

The radius of the previously mentioned auxllliary circles is

equal to
=Zsin60 ->29< 1 ..)
TK;]__MG? 0 ;\71-M§

On en auxiliary circle Af=§¢ -¢ = pel€; therefore

dat = ip oi€ de

By expanding dz/dt 1in a series in the neighborhood of the
point £ = EO’ it can be seen that -

%‘zf=a+bA§+...

where

gz g=tg O%P [1 ("o - 6, + %)]

With an a.ccuracy up to magnituﬁes*eentain@gp\m the first
degree

dx+idy=[<ﬁ=2,->

By meking use of equations (7.1) anmd (7.2), in the x,y-plane
the closed contour is constructed. The part of the contour corre-
sponding ‘to the auxiliary circles is not a streamline.

tg eOeWO + 1pel €] Cpade + 0(p?)

(7.2)

The details of the flow near the singular points may be geen
in figure 6, which glves the mapping of the clrcle for M = 0.333
end Cy = 7 = 1. -
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The solution obtalned may be interpreted as the flow about a
contour with suctlon of a small mass of gas through the surface of
the contour near the critical points. It can be noted that the
value of p 1s always very smsll; furthermore for very large
values of the lift force 6, is amall, for example, 6j = 4,59

for Cy = l. For large values of Cy the value of Mco 18 small
because M_ must not exceed Mcr 3 for small valuwes of Cy the
values of 6, are small.

Takling Into account the fact that the singular pointe are
located in the nelghborhood of the critlcal polnts where the veloe-
ities are near zero and that p 1is in all cames of very small mag-
niltude, the practical result is obtained that 1t is possible in
many cases to neglect the effect of the singular points on the flow
gbout the remsining part of the contour and to carry out 1ts con-
struction without the use of the function g.

8. THEOREM OF JOUKOWSKI, COMPUTATION OF THE MOMENT
OF THE AFRODYNAMIC FORCES ‘

In order to compute the forces exerted by the flow on the
airfoll, use is made of the well-known formulas obtained in the
application of the law of conservabtion of momentum to the mass
of fluid contained between the contour of the wing and a certain
closed contour E which includes the wing contour.

Py = -fpdy fpu (udy - vix) (8.1)
= -fpdx fpv (vdy - vix) -

where Px and Py are the pro,jections on the x- and y-axes of the

pressure forces of the flow on the wing. The Integrals in equa-
tions (8.1) are taken in the direction Pfor which the passage aboutb
the contour E 1s effected, that 1s, in the counterclockwlse

directlon.

By applying the law of conservation of momentum for com~
puting the aerodynamic moment of the wing profile,

M =fp (xdx + yiy) -fD (xv - yu)(udy - vix) (8.2)
, E E

1258
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By meking use of equations (3.7) and (6.2), the integrals
entering equations (8.1) and (8.2) may be transformed into inte-
grals teken over the corresponding contour in the £-plane. "The
contour E 1s so chosen that to it in the {-plane will corre-
spond a circle with center at the origin. All the magnitudes
entering under the integral sign in equations (8.1) and (8.2) are
expanded into serles in the neighborhood of the point at infinity
in the ¢-plane. From equation (3.7),

dx+idy=02{l+.2_gi_z(m-l>+
lzé [-l-al+4§§ <\/1-1E,2">] +...}d§ +

MZ

{ 2ﬂi§< 1 +l>+:€7-[-l+zl-4n?:\/'——=]+. . }

On integrating, this equation becomes

x+iy=C{ 211( )logg-.lg;[-l-al+
_-Lz(ﬁ?-l>]+. . .}+>\, cl{§-2n1<m__z+1)1og t+

"~

% [-l+gl-Z§Z’\/t=JM:2-]+. . .}+a0'+ao"i

where a.o' + a.oui is the constant of integration and a, = Bl +
17, 1s the coefficlent of t~2 in the expansion of 4&f/dz in
the nelghborhood of the point £ = oo,

Expanding u, v, p, P, X, ¥, 4x, and 4y in powere of 1/r
and integrating, the followlng expression is obitained:

(8.3)

(a")
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The theorem of Joukowski is thus valid also for the flow
about a body of a gas with large subsonic velociltles. This
theorem was proven earlier 1in reference 1 by making use of the
exact equations.

In a similar manner » bthe equation for the moment of the
asrodynamic forces is

2qg 2 ey Y
M= P oy, . 807 T (8.4)
NPT (ﬁ o °“°°> é‘” P

The constant ag' determines the position of the point

relatlive to which the moment is computed. The moment for the
corresponding profile in an incompressible flow is equal to

2 (2my, - 780) (V= By
where 'BO 18 the rsal part of the free term in the expansion of

the function 2z =X* (¢) in the neighborhood of the point ¢ =es .
Let aqg'/a,= Bg. The chord of the deformed profile in the com-

pressible flow will be denoted by b and the chord of the pro-
f£ile in the corresponding incompressible flow by b°; in gen-
eral the magnitudes referring to the incompressible flow will
be denoted by & superscript clrcls. ’

anm .

The moment coefficlent for an incompresslble flow Cmo is
given by
o 2nyq - ;Bo
Cp = ——gz————
The moment coefficient for a compressible flow C, 1s glven

by

. e 2 o2
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Cyo = 7/b°, and therefore

Then

is a function of the focal distance from the nose of the profille
and the expression for the moment Gmo may be given in the form

o _4dC° , 0 o
Cn =d0y° Cy + Cp

where

is the moment of the profile in the incompressible flow relative
to the focal point.

The final expression for C, can be given In the following
form:

2
acy,° o 02

Cy =[ — cy° + cm°] 2 bz (8.5)
acy 1-M2D

Translated by S. Relss
Netional Advisory Committee
for Aeronautlcs.
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